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Abstract—Passivity based adaptive control has had a
wide variety of practical applications due to its robust-
ness, flexibility and modularity. There exists representa-
tive adaptive algorithms (AAs) based on this approach
such as Gradient (G) (Ortega, Spong, 1989), Composite
(C) (Slotine, Li, 1989), Average (A) (Tang, Arteaga,
1994), and Modified Least Squares (MLS) (Lozano,
Canudas, 1990). Comparison1among them has not been
made. Proportional-integral (PI) type AAs developed in
references (Astolfi, Ortega, 2003; Qu, et.al., 2006; Tyukin
et. al., 2007; Wang, Slotine, 2006) are attractive due
to their ability to handle nonlinear parameters. Never-
theless, passivity properties for PI algorithms have not
been explored yet. In this paper we present a general
unified passive scheme that encompasses all aforemen-
tioned AAs including PI (for linear parameterization). A
comparative analysis in performances among them was
carried out considering the problem of passivity-based
adaptive control of a simple pendulum and tracking of
two trajectories.
Key words: Passive elements, Adaptive Algorithms, Sta-
bility.2

I. INTRODUCTION

In the early 1970’s, passivity and dissipativity con-
cepts were introduced by Willems (Willems, 1972)
and the notions of storage functions and supply rate
were established. Interconnections of passive elements
have particular features which were used by adaptive
control theory to generate the so called passivity based
adaptive control, which is nowadays a widely applied
methodology of control. Representative passive AAs
have been developed such as Gradient (G) (Ortega,
Spong, 1989), Composite (C) (Slotine, Li, 1989),
Average (A) (Tang, Arteaga, 1994), and Modified
Least Squares (MLS) (Lozano, Canudas, 1990) but
comparison among them has not been studied. In an-
other hand, PI type AAs recently reported in (Astolfi,
Ortega, 2003; Qu, et. al., 2006; Tyukin, et. al., 2007;
Wang, Slotine, 2006), introduce suitable degrees of
freedom which can be used to handle nonlinear pa-
rameters but, to the best of our knowledge, passivity
properties for such schemes have not been explored.
Since each algorithm was developed by independent

1As far as we know
2The work is supported by CONACyT No. 129800 and PAPIIT

No. 116412, México

reports, they are apparently related only by the fact
that they are passive. Nevertheless, in this report we
present a general passive adaptive law that encom-
passes all aforementioned algorithms, including PI for
linear parameterization. It is worth nothing that not
all particular cases of a passive algorithm are passive,
for example, MLS scheme (Lozano, Canudas, 1990)
is passive but its particular case, LS type adaptive law
(Slotine, Li, 1991), is not. Since all aforementioned
AAs comes from the same general scheme, the natural
question to ask is, which one has ”better” performance
for a specific application?. In this article it is proposed
a partial answer by giving a comparative analysis in
performances among all AAs, considering the model
of simple pendulum and tracking control.

II. PASSIVE ADAPTIVE ALGORITHMS

A. Linear error dynamics
The equation that describes the movement of a

simple pendulum is:

ml2ÿ + kl2ẏ +mgl sin(y) = u , Y (ÿ, ẏ, y)θ, (1)

with mass m, length l, acceleration due to the
gravity g, friction coefficient k and control input
(torque) u. Variable y denotes angle and its time
derivatives are represented with appropriate number
of dots. Y (ÿ, ẏ, y) ,

(
ÿ ẏ sin(y)

)T
and θ ,(

ml2 kl2 mgl
)T

is the real parameters vector.
Defining the tracking error variable as e = y(t)−yd(t),
where yd(t) a twice differentiable known path, the
sliding variable as

s = ė+ λe, λ > 0, (2)

and time derivative of the reference variable as ẏr(t) =
ẏd(t)− λe, equation (1) can be written as:

ml2ṡ = u−
(
ml2ÿr + kl2ẏ +mgl sin(y)

)
, u−ϕT θ,

(3)
where ϕ =

(
ÿr ẏ sin(y)

)T
is called regressor.

Adaptive control expression given by:

ua = −kss+ ϕT θ̂, ks > 0, (4)

renders the closed loop with (3) as:

ml2ṡ = −kss+ ϕT θ̃, (5)
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where θ̃ = θ̂ − θ. In order to establish stability
properties for closed loop system (5), it is proposed the
positive definite function Vs(s, θ̃) = 1

2ml
2s2+ γ1

2 θ̃
T θ̃.

Its time derivative along (5) gives V̇s(s, θ̃) = −kss2

where the AA, ˙̂
θ = −γ1ϕs (Gradient (G) algorithm),

was chosen. Then s ∈ L2 ∩ L∞. Since θ̃ ∈ L∞
then ṡ ∈ L∞ (by (5)) and, by Barbalat’s lemma,
s → 0 as t → ∞. This problem has a more general
approach (see (Ortega, Spong, 1989)) if the system
(5) is connected on a feedback configuration with
any passive adaptive law, as is depicted in Fig. (1).
Let us assume that AA in block H2 is passive from

Figure 1. Feedback connection of error dynamics, equation (5), in
H1 block, and any passive AA in block H2.

s → −ϕT θ̃ and θ̃ ∈ L∞. Then, H2 satisfies the
following inequality:

−
∫ T

0

sϕT θ̃dt ≥ −β, ∀T ≥ 0, β ≥ 0. (6)

Now, it is possible to state the following lemma (see
(Ortega, Spong, 1989)).

Lemma 1: Consider tracking error dynamics (5) is
connected in H1 block of Fig. (1) and any AA which
satisfies (6) is connected in H2 block. In addition,
assume θ̃ ∈ L∞. Then s→ 0 as t→∞.

Proof: The positive definite function:

V (s, θ̃) =
1

2
ml2s2 + β −

∫ t

0

sϕT θ̃dτ > 0, ∀s 6= 0

has time derivative along (5) as:

V̇ (s, θ̃) = −kss2 ≤ 0.

Then s ∈ L2 ∩ L∞. Since θ̃ ∈ L∞, then ṡ ∈ L∞ (by
(5)) and by Barbalat’s lemma, s→ 0 as t→∞.

As a result, any passive AA connected in H2 block
will render the point s = 0 asymptotically stable.
If the estimation error variable θ̃(t) and the AA are
generalized, it is possible to demonstrate that all rep-
resentative passive adaptive laws are encompassed in
an unified scheme. In addition, it is possible to demon-
strate passivity properties of PI-AAs (Astolfi, Ortega,

2003; Tyukin, et. al., 2007; Qu, et. al., 2006; Wang,
Slotine, 2006) in case of linear parameterization.
Consider estimation variable as θ̂ = θ̂I(t) + θ̂P (s) as
in references (Astolfi, Ortega, 2003; Qu, et. al., 2006;
Tyukin, et. al., 2007; Wang, Slotine, 2006). θ̂I(t) is
related to conventional Lyapunov-based designs and
θ̂P (s) is considered a new degree of freedom which
introduce an interaction between tracking error s and
estimation error dynamics. Defining the estimation
error variable as θ̃ = θ̂I − θ + θ̂P and estimation
error terms as θ̃I(t) = θ̂I(t) − θ and θ̃P (s) = θ̂P (s),
the following general passive AA encompasses the
mentioned representative algorithms.

Proposition 2: Consider the following adaptive al-
gorithm:

˙̃
θI(t) = −δZ(t)θ̃I(t)− γ1P (t)ϕs, (7)

−γ1θ̃TP (s)ϕs ≥ 1

2
θ̃TI
dP (t)−1

dt
θ̃I . (8)

If θ ∈ Rm, then θ̂I(t) : R+ → Rm and θ̂P (s) : R →
Rm. The general matrix function Z(t) : R+ → Rm×m
satisfies Z(t) ≥ 0 for all t ≥ 0, the time varying matrix
gain P (t) : R+ → Rm×m is such that P (t) > 0 for
all t ≥ 0. Real constants δ and γ1 are strictly positive.
With all aforementioned conditions, algorithm (7)-(8)
is passive from s→ −ϕT θ̃.

Proof: The positive definite function V (t) =
1

2γ1
θ̃I
T
P (t)−1θ̃I has time derivative along (7) given

by:

˙V (t) =
1

γ1
θ̃I
T
P−1

˙̃
θI +

1

2γ1
θ̃TI
dP−1

dt
θ̃I

≤ θ̃TI P
−1
(
−Pϕs− δ

γ1
Zθ̃I

)
− θ̃TPϕs,

= −θ̃TI ϕs−
δ

γ1
θ̃TI P

−1Zθ̃I − θ̃TPϕs

= −
(
θ̃I + θ̃P

)T
ϕs− δ

γ1
θ̃TI P

−1Zθ̃I

≤ −θ̃Tϕs.

Equation (8) was used in the second line. Then, (7)-(8)
is passive from s→ −θ̃Tϕ.
From adaptive passive law (7)-(8), two groups of
adaptive laws can be differentiated: one in which
δ > 0, γ1 > 0, P (t) = 1, θ̂P (s) = 0 and as a
result, estimated parameters vector θ̂ has only θ̂I(t)
term. In this case equation (8) is satisfied because
0 = θ̃TI

dP (t)
dt

−1
θ̃I ≤ −γ1θ̃TPϕs = 0. Within this group

of algorithms they are found:
• Gradient Algorithm (Ortega, Spong, 1989).

Z(t) = 0, (9)

which results in the expression ˙̂
θI =

˙̃
θI =

−γ1ϕs.

2
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• Composite (with fixed gains) Algorithm (Slotine,
Li, 1989).

Yf (ẏ, y) = W (p)Y (ÿ, ẏ, y),

W (p) =
λf

p+ λf
,

Z(t) = YfY
T
f , (10)

where Y (ÿ, ẏ, y) is defined in equation (1) and p
is the Laplace operator. Adaptive law in this case
is (in analysis form) ˙̃

θI = −δYfY Tf θ̃I − γ1ϕs or

(in implementable form) ˙̂
θI = −δYf ε(t) − γ1ϕs

where ε(t) = Y Tf θ̂I − uf and uf =W (p)u, u as
in equation (1).

• Average Algorithm (Tang, Arteaga, 1994).

Z(t) = γ2

∫ t

0

exp(−λc(t− τ))YfY Tf dτ,

Yf (ẏ, y) = W (p)Y (ÿ, ẏ, y),

W (p) =
λf

p+ λf
,

λc ≥ 0, γ2 > 0.

Adaptive law can be expressed as (see (Tang,
Arteaga, 1994))

˙̃
θI(t) = −δZ(t)θ̃I(t)− γ1ϕs. (11)

In implementable form:

˙̂
θI(t) = −δg(t)− γ1ϕs,

where

ġ(t) = − (λcI + δR(t)) g(t) + γ2Yf ε(t)

−γ1R(t)ϕs,
Ṙ(t) = −λcR(t) + γ2YfY

T
f ,

g(0) = 0, R(0) = 0.

In another hand, the second group satisfies θ̂P (s) 6= 0
then, vector of estimated parameters is θ̂ = θ̂I(t) +
θ̂P (s). For the following cases δ > 0, γ1 > 0, Z(t) =
0, in PI case P (t) is constant, and in MLS case P (t)
is time varying. Different choices of θ̃P are explained.
• PI algorithm (Astolfi, Ortega, 2003)

˙̃
θI(t) = −γ1P (t)ϕs, (12)
θ̃P (s) = −γPϕs, (13)

where γP = γ1ml
2, γ1 > 0, P (t) = ks where

ks is constant defined in equation (5). Condition
(8) is satisfied because 0 = θ̃TI

dP (t)
dt

−1
θ̃I ≤

−γ1θ̃P (s)Tϕs = γ1γPϕ
Tϕs2 with θ̃P as in

(13). Equations (12)-(13) gives the expression of
time derivative of estimation error variable as
˙̃
θ = −γ1ϕϕT θ̃.

• MLS scheme (Lozano, Canudas, 1990). Under the
assumption that an upperbound M ≥ ‖θ∗‖2 is
known, we have:
˙̃
θI = −P (t)ϕs, (14)

θ̂P =
−ϕs

(
θ̂TI Aθ̂I +M(1 + λL · λmaxR)

)
(1 + tr (ϕϕT )) (1 + s2)

The following selections are picked out in order
to render gain P (t) positive definite for all t ≥ 0
(see (Lozano, Canudas, 1990)):

Ṗ (t) = α(t) (−PAP + λLP ) ,

α(t) =
ϕTϕs2

(1 + tr (ϕϕT )) (1 + s2)
,

A =
ϕϕT

(1 + tr (ϕϕT ))
+ λLR,

λL ≥ 0, R > 0,

(λminR) I ≤ P−1(0) ≤
(
λmaxR+

1

λL

)
I,

where R is a m ×m constant matrix and α(t) :
R+ → R+. It is worth nothing that the above
algorithm is exactly the LS algorithm (Slotine,
Li, 1991) if α(t) = 1, R = 0, λL = 0, and
θ̃P = 0, nevertheless, LS algorithm is not passive.
Condition (8) is satisfied because (see (Lozano,
Canudas, 1990)):

1

2
(θ̂I − θ∗)T

dP−1

dt
(θ̂I − θ∗)

≤ 1

2
α(t)(θ̂I − θ∗)TA(θ̂I − θ∗)

≤ α(t)
(
θ̂TI Aθ̂I + θ∗TAθ∗

)
≤ α(t)

(
θ̂TI Aθ̂I +M(1 + λ · λmaxR)

)
,

and we obtain:
1

2
(θ̂I − θ∗T )

dP−1

dt
(θ̂I − θ∗) ≤ −θ̂TPϕs.

B. General error dynamics

A more general version of dynamics (5) is given by:

ė = −ψ(e) + ϕT θ̃, (15)

where e is tracking error variable and ψ(·) is a continu-
ous scalar function which satisfies, eψ(e) > 0, ∀e 6= 0
and lime→∞

∫ e
0
ψ(τ)dτ → ∞. Result in Lemma

1 holds for this dynamics as can be stated in the
following proposition.

Proposition 3: Consider equation (15) is connected
in H1 block of Figure (1) and all conditions of Lemma
1 hold. Then e→ 0 as t→∞.

Proof: Positive definite function V (e, θ̃) = 1
2e

2+

β−
∫ T
0
eϕT θ̃dt , has time derivative along trajectories

of (15) as:

V̇ (e, θ̃) = −eψ(e) ≤ 0,

3
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Table I
PARAMETERS OF SIMULATION FOR EACH PASSIVE AA. IN THE

UPPER ROW THERE ARE THE NOMINAL VALUES FOR MASS,
FRICTION COEFFICIENT AND LENGTH.

AA m∗ = 1kg k∗ = .015 l∗ = 1m

G γ1 = 5
C γ1 = 5 λf = 1 δ = 1

A γ1 = 5
γ2 = 10

λf = 1
δ = 1

λc = .05

PI γ1ks = 5 γP = 1

MLS M = 100
λL = 1
λmax = 1

R = I
P (0) = 100× I

Table II
PERFORMANCE PARAMETERS FOR EACH ALGORITHM: SETTLING
TIMES FOR CONSTANT AND TIME VARYING REFERENCES (C-ST
AND V-ST RESPECTIVELY), AND RMS ERROR FOR CONSTANT

AND VARYING REFERENCE (C-RMSE AND V-RMSE
RESPECTIVELY).

AA C-St [s] V-St [s] C-RMSe V-RMSe
G 22.3344 25.7691 0.1449 0.1302
C 10.6433 13.9012 0.1141 0.1202
A 6.4681 14.7169 0.0429 0.0699
PI 22.9186 26.2890 0.1391 0.1177
MLS 12.1418 12.8840 0.0072 0.0293

by the same reasons as in Lemma 1, then e → 0 as
t→∞.

III. SIMULATIONS AND RESULTS.

Simulations were carried out over model (1), control
law (4) and adaptive schemes Gradient, Composite,
Average, PI (12)-(13), and MLS (14). Also two tra-
jectories were proved, one time varying, given by
yd(t) = 1 + sin(t) and the constant path yd(t) = π

4 .
Constants that were used in the simulation, are given
in Table I.
The tuning methodology was: beginning with gradient
algorithm, a first value of the gain γ1 which generates
qualitatively good response was fixed. Then, composite
law has the same γ1 gain and δ is chosen such that
generates qualitative good response, and so on.
For all simulations ks = 8, λ = 1 in equations
(5) and (2) respectively and when part of estimation
had to be integrated, it was used the vector θ̂(0) =(
1 1 1

)T
as initial condition.

Once all simulations were carried out, it was used
the Matlab command ”stepinfo” over the vectors de-
scribing tracking errors and the parameter chosen as
performance index was settling time (St). As RMS

error, the formula
√

1
n

∑i=n
i=1 e

2
i was applied.

Table II presents the results for each adaptive law,
where C and V denote constant reference and time
varying reference respectively; unit of time is second
[s]. In Fig.(2) it is depicted the behavior of each algo-
rithm for tracking error and control signal when refer-
ence is the time varying trajectory yd(t) = 1+ sin(t).
Control signals are almost the same for all algorithms.
MLS scheme has the smoothest behavior in tracking

Figure 2. Tracking error and control signal for each one of the five
passive AAs in closed loop with (1) and (4). Trajectory of reference
is yd = 1 + sin(t).

Figure 3. Estimated parameters’ behavior with time varying
reference yd = 1 + sin(t).

error but a big overshoot in control3. MLS has also
better settling time and the smallest RMS error, as can
be concluded from Table II. For tracking error, PI has
almost the same behavior as Gradient but PI has the
biggest settling time (Table II). Due to the presence
of persistent excitation through reference signal, all
estimated parameters reach the real values (Figure (3)).

3It is not depicted in the figure due to comparative purposes.
Overshoot magnitude is about 75 units

4
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Figure 4. Tracking error and control signal for each one of the five
passive AAs in closed loop with (1) and (4). Trajectory of reference
is yd = π

4
.

Figure 5. Estimated parameters’ behavior with constant reference
yd = π

4
.

The constant reference trajectory yd = π
4 was also

proved over system (1), adaptive control (4) and all
passive algorithms. Tracking error and control signals
are depicted in Figure (4). MLS has the smoothest
behavior in tracking error and control signal4. It is
worth noting that MLS depends on several tuning
variables (Table I) and it is difficult to obtain ap-
propriate responses with this algorithm. MLS has the

4No overshoot present

smallest RMS error while Gradient has the biggest
(Table II). Average has the smallest settling time while
PI the biggest (Table II). Average algorithm takes
advantage of sufficient excitation in transient response
and estimation of all parameters reach the real value.
Due to persistent excitation through function sin(y) of
the regressor, estimated mgl reach the real value. For
the rest of cases, nonconvergence to real parameters is
expected due to the absence of persistent excitation;
all that we can expect is stability and convergence to
an unknown constant value (Figure 5).

IV. CONCLUSION

In this article we presented an unified scheme
from which the representative passive AAs Gradient,
Composite, Average, PI, and MLS can be derived. A
comparative analysis between them was carried out
for the problem of adaptive control based on passivity
of a simple pendulum. Although performance depends
on gains chosen for each law, we tried to put each
algorithm in an equilibrated perspective by choosing
equivalent constants with equal values. With time vary-
ing reference, MLS scheme has the smoothest behavior
in tracking error but a big overshoot in control. Due to
the presence of persistent excitation through reference
signal, all estimated parameters reach real values. With
constant reference, MLS has the smoothest behavior
in tracking error and control signal. Nonconvergence
to real parameters is expected due to the absence of
persistent excitation.
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